

Shwetha Prakash

shwethaprakash13@gmail.com
<https://github.com/Shweth-a>
[linkedin.com/in/shwethaprakash13](https://www.linkedin.com/in/shwethaprakash13)

Research Interests

Cosmology; CMB and mm-wave instrumentation; mKID detector simulations; radio interferometry; astronomical data analysis; numerical astrophysics.

Education

Cornell University Ph.D Physics (Year 2)	<i>Ithaca, NY</i> 2024–Present
Ashoka University Postgraduate Diploma (Advanced Major: Physics, Minor: Astronomy), GPA: 3.73/4.0 B.Sc.(Honors) Physics, GPA: 3.53/4.0	<i>Sonipat, India</i> 2024 2023

Current Research

Advisors: Dr. Abigail Crites, Dr. Michael Niemack

TIME (Tomographic Ionized Carbon Mapping Experiment)

- Optimizing the pipeline that performs calibration, reduction, and analysis of data collected by TIME.
- Instrumentation of the cryo system, TES detectors and on site commissioning runs at Kitt Peak.

CCAT - PrimeCAM

- Developing software tools for data acquisition from mKID detectors on PrimeCAM.
- Exploring characterisation and data analysis of large mKID arrays.

Technical Skills

Programming: Python (NumPy, SciPy, Matplotlib, AstroPy, GWpy), \LaTeX

Data Analysis: sotodlib (Simons Observatory), CASA, IRAF, HEASoft, DS9, Siril, friendlyVRI

Scientific Computing: PLUTO MHD code, General Particle Tracer (GPT), Jupyter, Docker

Version Control: Git, GitHub

Instrumentation: GSO StarTracker, Celestron NexStar 7SE telescope, STC-7 CMOS camera

Operating Systems: Linux, macOS, Windows

Teaching Experience

Cornell University

- PHYS 2207: Fundamentals of Physics I - Teaching Assistant *Fall 2024, Fall 2025*
- PHYS 2208: Fundamentals of Physics II - Teaching Assistant *Spring 2024*

Ashoka University

- Observing the Cosmos (Astronomy Lab) - Teaching Assistant *Spring 2023*
- Classical Mechanics and Electromagnetism Lab - Teaching Assistant *Fall 2023*

Past Research Experience

Senior Thesis - Ashoka University <i>Mentors: Dr. Bikram Phookun, Dr. Nissim Kanekar</i>	<i>Aug 2023–May 2024</i>
▪ Performed radio interferometric analysis of Damped Lyman-Alpha systems using VLA HI emission data.	
▪ Developed CASA-based workflows for calibration and imaging.	
CLASSE REU - Cornell University <i>Mentor: Dr. Jared Maxson</i>	<i>Jun 2023–Aug 2023</i>
▪ Simulated and built a vacuum-compatible solenoid for electron-beam focusing in UED experiments.	
▪ Conducted COMSOL and GPT simulations for beam transport optimization.	
▪ Featured in Cornell media: Project Summary , REU Interview .	
Advanced Independent Lab (Soft Matter Physics) <i>Mentor: Dr. Pramoda Kumar</i>	<i>Jan 2023–May 2023</i>
▪ Fabricated a liquid crystal cell and studied its birefringence experimentally.	

Selected Projects

Monte Carlo Simulations of Lennard-Jones Systems	<i>Aug 2022–Dec 2022</i>
▪ Implemented Monte Carlo algorithms in Python to explore thermodynamics of lattice systems.	
Earth's Mass and J_2 Perturbation via Orbital Simulation	<i>Jun 2022–Aug 2022</i>
▪ Modeled satellite precession using RK4 methods and AstroSAT data to estimate Earth's J_2 .	
Solar Temperature from Spectral Analysis	<i>Nov 2021–May 2022</i>
▪ Designed a spectrometer and analyzed solar spectra using Wien's displacement law.	
Modeling Chladni Figures via Finite Difference Methods	<i>Jan 2022–May 2022</i>
▪ Simulated 2D wave equations in Python to reproduce vibrational modes of plates.	

Leadership and Service

Vice President - Physics Graduate Society, Cornell University	<i>2025–Present</i>
▪ Coordinating academic, social, and mentorship events for the Cornell physics graduate community.	
Founding President - Astronomy Society, Ashoka University	<i>2023–Present</i>
▪ Organized India's first Undergraduate Radio Astronomy Conference.	
▪ Led workshops on optical data reduction and telescope operation.	
Core Team - Ashoka University Women in STEM (AUWS)	<i>2023–Present</i>
▪ Advocated for integrating women's STEM engagement into the LGP curriculum.	
Head - Astronomy Club, Ashoka University	<i>2022–2023</i>
▪ Organized a three-day astronomy fest and hands-on instrumentation sessions.	
Founder and Head of Design - Samatvam India	<i>2020–Present</i>
▪ Co-founded an NGO promoting gender and social equality through science outreach.	